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Abstract

In this study, we explore the loss barrier between two equal-length SGD trajectories
branching from a common initial portion of training with the same data order,
focusing on linear mode connectivity during training. We aim to understand the
behavior of the loss barrier as a function of the number of common gradient steps
(k1) and the number of independent steps (k2). Our contributions include: (1)
showing that even with an early split in trajectories (low k1), linear mode connec-
tivity is maintained after many independent steps (k2), (2) demonstrating that as k2
increases, linear connectivity persists if k1 is sufficiently high, despite trajectory
divergence in weight-space and prediction-space, (3) providing evidence that dur-
ing early training stages, the optimization problem enters an approximately convex
basin, and (4) validating these observations across various network architectures
and datasets, expanding on previous work.

1 Introduction

Despite their widespread use and impressive performance, understanding the underlying mechanisms
that contribute to the success of deep neural networks remains a challenging task. One of the key
questions in deep learning research is understanding the optimization landscape of neural networks
and how Stochastic Gradient Descent (SGD) navigates through it to find optimal solutions. In this
context, the phenomenon of Linear Mode Connectivity (LMC) has recently attracted attention due to
its potential implications on the optimization process and practical applications.

Linear Mode Connectivity refers to the existence of linear paths with non-increasing loss connecting
different minima found by SGD in the optimization landscape. This connectivity has implications
for pruning and sparse training methods, distributed optimization, and ensemble techniques, among
other applications. A deeper understanding of LMC can provide insights into the factors governing
the optimization process and contribute to the development of more effective training algorithms and
network architectures.

Despite recent progress in understanding LMC, the phenomenon remains largely unexplained, calling
for further investigation. Our research intends to examine the theoretical and empirical aspects of
LMC in deep neural networks. By exploring various factors that may potentially affect LMC and
evaluating their impact on the observed behavior, we aim to broaden the current understanding and
offer a more comprehensive explanation of this phenomenon.



In our analysis, we examine the loss barrier between two SGD trajectories of equal length that branch
off from a shared initial portion of training with a common data order. Distinct from much of the
previous work, our focus lies in comprehending linear mode connectivity during the training process.
Specifically, our primary objective is to understand the behavior of the loss barrier as a function
of both the number of common gradient steps (k1) and the number of independent steps (k2). Our
contributions are as follows:

• Demonstrated that even if the split in trajectories occurs early in training (low k1), where it
has a comparatively lower accuracy level than the final accuracy, there would still be a zero
barrier or linear mode connectivity, even after many independent steps (k2).

• Demonstrated that as k2 increases, even though the two trajectories diverge in both weight-
space linear connectivity is maintained, provided that k1 is sufficiently high

• These two observations offer evidence to support the hypothesis that, during early stages of
training, the optimization problem, restricted to the path navigated in weight-space by SGD,
enters an approximately convex basin.

• Expanded upon previous work by examining different network architectures and datasets,
validating the observations of linear connectivity across various scenarios.

2 Preliminaries

2.1 Formal Definitions

Let fw : Rd −→ Rp be a neural network with weights w and L(w) a loss function. Let
Eα(w1,w2) = L(αw1 + (1 − α)w2) be the loss of the network created by linearly interpolat-
ing between the weights. The loss barrier is defined as:

B(w1,w2) = sup
α
L
(
αw1 + (1− α)w2

)
−

(
αL(w1) + (1− α)L(w2)

)
(1)

We say that two networks w1 and w2 are LMC if B(w1,w2) ≈ 0. The definition provided above
differs from the one proposed by Frankle et al. [2020], which used 1

2L(w1) +
1
2L(w2) instead of

αL(w1) + (1− α)L(w2). These definitions are equivalent when L(w1) = L(w2). However, we
adopt the definition suggested by Entezari et al. [2021], which assigns no barrier value to a loss that
changes linearly between w1 and w2. Notice that LMC would be expected if the loss landscape were
convex.

In our analysis, we focus on the loss barrier between two SGD trajectories of the same length.
Each step of SGD is stochastic and dependent on different data orders. Let k denote the number of
stochastic steps in a trajectory. We consider branch trajectories that split from a shared early portion
of training with a common data order. We use k1 to represent the number of common gradient steps
and k2 to represent the number of independent steps. Our goal is to understand the behavior of the
loss barrier as a function of both k1 and k2: B(k1, k2). We refer to the model at step k1, before the
split, as the pre-trained model.

2.2 Related Research

The investigation of the loss landscape in deep neural networks has garnered significant attention, with
a focus on the connectivity between different minima found by Stochastic Gradient Descent (SGD).
Early research explored the existence of nonlinear paths of non-increasing loss in the parameter space
between such minima, a phenomenon often referred to as mode connectivity Freeman and Bruna

2



[2016], Draxler et al. [2018]. Subsequent studies, such as those by Draxler et al. [2018] and Garipov
et al. [2018], demonstrated that local minima found by SGD can be connected via piecewise linear
paths. More recent research has delved into the linear connectivity of trained networks from the same
initialization. Nagarajan and Kolter [2019] found that such networks are connected by linear paths of
constant test error. Building upon this, both Frankle et al. [2020] and Yunis et al. [2022] revealed that,
under certain conditions, the loss function is roughly convex when restricted to the convex hull of
SGD solutions obtained from the same initialization.

One area of research has explored the permutation invariance of neural networks. Entezari et al. [2021]
put forth a conjecture suggesting that by taking into account permutation invariance, the barriers
in linear interpolation between SGD solutions could be substantially reduced. This idea implies
that the loss landscape of neural networks, when considering all possible permutation symmetries
of hidden units, often comprises (almost) a single basin. Building on this, Ainsworth et al. [2022]
demonstrated that the conjecture is valid for wide networks (although not for ResNets, as confirmed
by Benzing et al. [2022]) and devised algorithms for permuting the units of one model to align them
with a reference model, thereby facilitating the fusion of the two models in weight space.

Finally, recent work has examined the impact of network width and depth on the barriers between
models. Entezari et al. [2021] showed that the barrier decreases with the width of the network,
while Jordan et al. [2022] initially observed that the barrier appears to increase with depth due to the
”variance collapse” phenomenon. However, after correcting for this vanishing variance, the barrier
was found to actually decrease with depth.

Understanding LMC has both theoretical and practical implications. Theoretically, LMC offers
insights into why SGD and its variants are effective in training large networks, despite the inherent
complexity of large non-convex optimization problems. Practically, LMC is relevant to pruning
and sparse training methods, distributed optimization, and ensemble methods, which rely on a deep
understanding of the loss landscape and the ability to sample from solutions. For instance, the Lottery
Ticket Hypothesis (LTH) (Frankle and Carbin [2018]) conjectures that neural networks contain a
sparse sub-network that can be trained in isolation from initialization to achieve comparable test
accuracy. Solutions that are linearly connected with no barrier have the same lottery ticket Frankle
et al. [2020]. This connection between LTH and LMC suggests potential benefits for training and
generalization. Furthermore, improved knowledge of mode connectivity has been shown to be
essential in devising better ensemble methods (Garipov et al. [2018]), while linear mode connectivity
between solutions or checkpoints facilitates the use of weight averaging techniques for distributed
optimization (Scaman et al. [2019]). Fort et al. [2020] also demonstrate the connection between linear
connectivity and the advantage nonlinear networks enjoy over their linearized version.

3 Empirical Analysis

3.1 Experimental Setup

Networks and datasets. We investigate image classification networks on MNIST (LeCun [1998]),
CIFAR-10 (Krizhevsky et al. [2009]), and TinyImageNet (Deng et al. [2009]), as detailed in Table 1.
All hyperparameters are set to standard values from established in previous research: For MNIST,
we employed the LeNet-5 architecture (LeCun et al. [1998]). The network consists of a total of 7
layers, including 2 convolutional layers, followed by 2 average pooling layers, and 3 fully connected
layers. For CIFAR-10, we used a reduced version of the VGG-16 architecture (Simonyan and
Zisserman [2014]). The modified model consists of four layers in total, with two convolutional
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layers followed by two fully connected layers. Max-pooling is performed after each convolutional
layer, and dropout is applied after each of the fully connected layers. This reduced VGG model has
855,000 parameters, making it less computationally intensive while maintaining the basic structure
of the original VGG-16 architecture. We used the AlexNet architecture (Krizhevsky et al. [2017])
for TinyImageNet. Comprised of eight layers in total, AlexNet features five convolutional layers
followed by three fully connected layers, with the final layer outputting class labels. The first two
convolutional layers include batch normalization, while dropout is employed after each of the last
two fully connected layers.

Using smaller batch sizes relative to the number of training samples injects more noise into the
stochastic weight vector updates performed by SGD, potentially resulting in greater divergence in
weight space between the two trained models. The batch sizes and training samples for each dataset
are detailed in Table 1. All the architectures examined in this project exhibit overparameterization, in
the sense that they have more trainable parameters than data-points.

Network Dataset Params Max Steps Max Epochs Batch Size Train Samples Final Accuracy Optimizer
LeNet5 MNIST 62K 580 10 1024 60,000 0.9818 Adam
ReducedVGG CIFAR-10 855K 11,310 29 128 50,000 0.7136 Adam
AlexNet TinyImageNet 60M 14,058 9 64 100,000 0.4064 Adam

Table 1: Summary of image classification networks and their performance on various datasets.

Sampling Method. We adopt an efficient training method to search multiple different branch
trajectories of stochastic gradient steps, to minimize computational resources, as detailed in Algorithm
1. We first train a single model, referred to as the ”main branch” trajectory (see plot next to Algorithm
1), for the maximum number of epochs, saving checkpoints at each epoch. Subsequently, we reload
the model for various k1 values and continue the training of only one new model for an additional k2
steps. Afterward, we couple this new model with the original ”main branch” model at the k1 + k2
position. This approach significantly reduces the computational resources required for the experiment,
yet generates samples that depend on the same random initialization. To address this issue, we repeat
this process twice.

When we load the checkpoint model, we also load the optimizer from the same point, which enables
us to resume its learning schedule. All models were trained using the Cross Entropy loss.

For each pair of (k1, k2), we generate two pairs of models which we identity by their weights vectors
wk1+k2 and w′

k1+k2
. These two models were trained using k2 independent training steps from

the same pre-trained model, previously trained for k1 steps. We then explore the linear path in
weight-space between these two models and sample the loss function along this path. To do this, we
choose 25 equally-spaced points between 0 and 1, denoted by α. For each sampled α, we compute
the loss function at the point αwk1+k2

+ (1− α)w′
k1+k2

.

We examine the difference between the interpolation loss and the interpolated loss value, a term we
refer to as the interpolation gap:

L(αwk1+k2 + (1− α)w′
k1+k2

)− αL(wk1+k2) + (1− α)L(w′
k1+k2

)

The interpolation gap highlights the disparity between the actual loss along the linear path in weight-
space and the loss value expected based on the interpolation of the two models. Note that the value
is always zero at α = 0 or α = 1. We define the cross entropy train/loss barrier as the maximum
sampled interpolation gap. In certain cases, the loss function exhibits convex behavior along the path,
resulting in a decrease in loss and a negative interpolation gap. In cases where the context makes
it apparent, we regard the barrier as negative in these scenarios. Additionally, we evaluate not just
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Algorithm 1 Training Method

Require: datasets, network with random initialization, kmax, list of k1
values K

1: checkpoints← {}
2: for i← 1 to kmax do
3: Train the network for one epoch with SGD {main branch}
4: checkpoints[i]← network
5: end for
6: Results← {}
7: for k1 in K do
8: model← checkpoints[k1]

9: for k2 ← k1 to kmax do
10: Train model for one epoch with SGD
11: Results[k1, k2] = (checkpoints[k1 + k2],model)

12: end for
13: end for
14: return Results

kmax

k0

k1

ki

kmax

kj

kmax

the loss barrier, but also the error barrier, defined as one minus the accuracy. By examining both the
train/loss barrier and the error barrier, our empirical analysis offers a thorough understanding of the
model’s performance and the characteristics of the loss function along the linear path in weight-space.

3.2 Results and Discussion

Loss Barrier and Pre-training Steps. We begin by considering the loss barrier as a function of k1,
the number of steps taken before the trajectories have split.
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Figure 1: Train and Test cross entropy barriers for all three datasets when k2 = max steps− k1. All
networks exhibits linear connectivity

Linear connectivity is observed for all datasets, even for pre-trained networks with lower accuracy
levels than the final accuracy. While more challenging classification tasks display high interpolation
gap at the early stages of training, i.e., smaller values of k1, all networks eventually exhibit a form of
linear connectivity. We observe almost identical train and test loss barriers. This can be attributed to
the networks not overfitting the data, as train and test losses are roughly the same on all three cases. In
the case of MNIST, linear connectivity is even observed at initialization (notice the scale in the Figure
1). Figure 1 shows that the train loss barrier decreases for larger values of k1 and k2 = kmax − k1.
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Figure 2: Cross entropy barriers against the pre-trained accuracy. Each point in the plot is a model
that was trained for k1 + k2 = kmax steps.

For CIFAR-10 and MNIST, the interpolation gap becomes negative at high values of k1, indicating a
convex loss landscape along the linear path between the two points (see the right column in Figure 3,
see the loss landscape in Figure 5).

One might argue (as noted by Frankle et al. [2020]) that linear connectivity occurs due to the network
converging during pre-training. However, we present two arguments against this notion. First, Figure
2 demonstrates that linear connectivity holds true even for pre-trained networks with comparatively
lower accuracy levels than the final accuracy. For example, two networks originating from the same
pre-trained model with approximately 50% accuracy on CIFAR-10 were trained to reach around 70%

accuracy and exhibited linear connectivity. Second, the two models have a non-negligible difference
in both weight-space (see Figure 4(a)) and prediction-space (the cross-entropy distance between the
two train prediction vectors).

These observations suggest that even if a pre-trained model has a non-trivial, albeit not necessarily
high, accuracy, two networks trained independently from it still exhibit linear connectivity. Despite
the two trained copies learning the underlying function more effectively than the original pre-
trained model and following distinct paths in the optimization landscape, they maintain their linear
connection.

Our findings are consistent with those of Frankle et al. [2020] for different networks and partially
different datasets. The observation that networks become linearly connected at relatively low accuracy
levels supports the hypothesis that, at a certain point during training, the network learns a non-trivial
representation of the data such that, with high probability over the sampling of the batches, the loss
function restricted to the convex hull of possible paths SGD can take is convex.

Loss Barrier and Independent Steps. We now consider the relationship between the loss barrier
and the number of independent steps taken during the training process. Notice that, assuming the
gradients of the loss function ∇L(w) are bounded by some constant, we might expect the barrier
to behave like O(k2), where the O notation conceals constants that do not depend on k2. Figure 3
plots the train interpolation gap for various networks with different values of k1. We observe that,
for low levels of k1, the barrier increases with k2 across all cases. However, when k1 exceeds a
certain threshold, the barrier remains constant at a low level, despite an increase in the number of
independent updates. This suggests that, from a specific point in pre-training, the loss landscape
between the two networks maintains linear connectivity, even after a considerable number of separate
SGD steps.
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Figure 3: Train interpolation gap along the linear path connecting two solutions found by SGD in
weight space for different models with varying values of k1 (the pre-trained steps). Brighter colors
correspond to larger values of k2 (the number of independent steps). The loss barrier is the maximum
value of the curve, typically observed at α ≈ 0.5. All datasets exhibit a decrease in the error barrier
as k1 increases. Larger networks or more difficult classification tasks display larger loss barriers,
with MNIST networks exhibiting negligible barriers even at k1 = 0. Note the different y-scale in
each row. For CIFAR-10 and MNIST, the interpolation gap becomes negative at high values of k1,
indicating a convex loss landscape along the linear path between the two points. The barrier increases
with k2 during the early stages of training.

Figure 4 demonstrates that as k2 increases, the two networks diverge in weight-space and maintain
significant distance from each other. Concurrently, the cross-entropy between the train prediction
vectors of the two networks also diverges as k2 grows. By evaluating the cross-entropy between each
network’s prediction vectors and averaging this metric across the entire dataset, we can discern that
the networks become increasingly functionally dissimilar as k2 expands.
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Despite the observed divergence, linear connectivity is preserved in the cases of CIFAR-10 and
MNIST. This observation suggests that LMC is not solely a characteristic of local convexity within a
small neighborhood surrounding the next stochastic step. Instead, it signifies that the optimization
problem, constrained by the path traversed in weight-space by SGD, enters an approximately convex
basin at a specific stage during training, prior to reaching convergence.
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(a) the L2 distance in weight-space between the two models against the number of independent steps
taken by SGD
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(b) Plot of the Train Loss Barrier against the number of independent steps taken by SGD

Figure 4: Models originating from the same pre-trained model diverge in weight-space as the number
of SGD steps increases. Despite the growing distance between the weight vectors, the loss barrier
between them ceases to increase beyond a certain point during the pre-trained model’s training. This
observation suggests that the loss function, confined to the path traversed in weight-space by SGD,
turns convex after reaching a specific stage in training, but before achieving convergence.

4 Conclusion

In this paper, we have explored the phenomenon of Linear Mode Connectivity (LMC) in deep neural
networks. Our investigation focused on the behavior of the loss barrier between two SGD trajectories
of the same length that branched off from a shared early portion of training with a common data
order.

We have demonstrated that LMC is preserved even when trajectories split early in training and that it
remains intact despite the divergence of the trajectories in both weight-space and prediction-space as
we increase the number of independent steps.

This project is currently a work in progress, and our primary motivation is to delve deeper into
the factors that underlie the very intriguing phenomenon of Linear Mode Connectivity. LMC is
particularly interesting because it drastically reduces the complexity of the loss landscape in neural
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networks. In our study, we only considered SGD trajectories that branched off from a shared early
portion of training. However, Entezari et al. [2021] conjectured that if permutation symmetries of
hidden units are taken into account, all trajectories would lie within a single convex basin. Ainsworth
et al. [2022] and Benzing et al. [2022] showed only partial support for this claim.

Additionally, I am interested in understanding the role overparameterization plays in LMC. Further
research in this direction can provide valuable insights into the optimization process of deep neural
networks.
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A Additional Plots

0.00 0.25 0.50 0.75 1.00
Interpolation

0

1

2

3

4

5

6

C
ro

ss
 E

nt
ro

py
 L

os
s 

(T
ra

in
) 0 Pre-trained Steps

0.00 0.25 0.50 0.75 1.00
Interpolation

0

1

2

3

4

5

6

C
ro

ss
 E

nt
ro

py
 L

os
s 

(T
ra

in
) 1562 Pre-trained Steps

0.00 0.25 0.50 0.75 1.00
Interpolation

0

1

2

3

4

5

6

C
ro

ss
 E

nt
ro

py
 L

os
s 

(T
ra

in
) 3124 Pre-trained Steps

Additional Steps
1562 4686 6248 7810 10934 14058

(a) Tiny-ImageNet
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(b) CIFAR-10
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Figure 5: Train loss landscape
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Figure 6: Train and Test accuracy on the ”main branch” of training (Algorithm 1)
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