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Abstract

Voting rules are fundamental tools in collective decision-making, yet their prac-
tical implementation often faces significant challenges due to the cognitive and
logistical burdens of collecting and processing complete preference profiles. This
work investigates the communication complexity of approximating the Borda vot-
ing rule, focusing on reducing the information burden required to compute ap-
proximate scores for all candidates simultaneously within a small additive mar-
gin of error, ε. We establish tight bounds on the deterministic communica-
tion complexity of approximating the Borda scores, proving an upper bound of
O(nm log 1

ε ) and lower bounds of Ω(nm) for general ε and Ω(nm logm) for
sufficiently small ε, where n is the number of voters and m is the number of
candidates. Furthermore, we demonstrate that randomized protocols can signifi-
cantly reduce communication complexity. We give a randomized protocol using at
most O( 1

ε2m(logm+log 1
δ )) bits of communication that approximates the Borda

scores up to ε for all candidates simultaneously with probability at least 1 − δ.
Our results highlight the trade-offs between communication efficiency and out-
come accuracy, offering insights into the practical implementation of voting rules
under informational constraints.

1 Introduction

In collective decision-making, voting rules serve to aggregate individual preferences into a soci-
etal outcome. These rules dictate how votes are transformed into decisions or rankings, striving
to balance fairness, efficiency, and representativeness [12]. Examples range from simple plurality
voting, where each individual has one vote and the alternative with the most votes wins, to more
sophisticated methods like the Borda count, which assigns scores to alternatives based on individu-
als’ rankings over them [6], and the Bradley-Terry model, which ranks candidates using pairwise
comparisons between them [4]. These methods provide a foundation for aggregating preferences in
diverse contexts, from elections to recommendation systems.

Despite the theoretical appeal of more sophisticated voting rules, their practical application faces
substantial hurdles. As the number of voters and candidates increases, collecting and processing
complete preference information becomes unfeasible [5]. Expecting participants to rank all alter-
natives imposes significant cognitive and logistical burdens, particularly in scenarios with a large
number of options. Moreover, logistical constraints make it challenging to efficiently manage and
process such extensive data [7]. These difficulties often hinder the adoption of voting rules that rely
on detailed preference aggregation in real-world settings.

To tackle these challenges, communication complexity [10] offers a natural lens through which to
evaluate voting rules. At its core, communication complexity formalizes the information burden on
voters through a system of queries. Each query addresses a specific preference question, such as “Do
you prefer A over B?” or “Is A your favorite option?” [7]. Summing the total number of queries re-
quired across all voters quantifies the communication burden of a voting rule, providing a principled
basis for systematic comparisons. High communication complexity demonstrates that a voting rule
is impractical in real-world settings due to the excessive burden it places on voters. By identifying
voting rules that are infeasible under informational constraints, communication complexity helps
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focus attention on more efficient alternatives.1 This framework highlights the trade-off between
practical constraints and the quality of outcomes, offering valuable insights into the efficiency of
voting rules.

In this work, we study the communication complexity of approximating the Borda voting rule (see
Definition 2.3). By approximation, we mean computing scores for all alternatives that deviate from
the scores found in the exact rule by a small additive margin ε, hopefully reducing the communica-
tion required. This approach is particularly compelling in scenarios where participants are willing
to accept rules that produce outcomes slightly less representative of their preferences in exchange
for a significant reduction in communication burden [5]. For example, in cases where Borda is de-
sirable but impractical due to high communication requirements, approximating Borda may offer a
better balance – reducing the burden significantly while retaining much of its quality. This approach
is often preferable to both exact Borda, which is communication-intensive, and simpler rules like
plurality, which sacrifice outcome quality for minimal communication.

We address the following key questions:

What are the theoretical limits on the amount of information required to compute an ε-
approximation of scores for Borda count?

and:

Can randomized methods surpass the non-random lower bounds, reducing communication
complexity further while providing accurate approximations with high probability?

By studying the communication complexity of approximate voting rules, we aim to bridge the gap
between theoretical social choice models and their practical implementation.

Our Results. In Section 2, we formalize the problem by introducing voting rules, the Borda rule
with scores normalized to [0, 1], and communication complexity. We also define the notion of ap-
proximate voting rules, highlighting the trade-off between accuracy and communication efficiency,
and extend the relevant communication complexity results to our approximation setting. In Sec-
tion 3, we analyze deterministic protocols and establish both upper and lower bounds. We prove that
approximating the Borda scores of all m candidates within an error of ϵ across n voters requires at
most O

(
nm log 1

ϵ

)
bits of communication (Theorem 3.3). Complementing this, we show that any

deterministic protocol must use at least Ω(nm logm) bits for small ϵ (Theorem 3.5), matching the
complexity of exact computation. For larger ε, we show a lower bound of Ω(nm) bit for any deter-
ministic protocol (Theorem 3.8), translating a result from [15] to our notion of approximation. In
Section 4, we demonstrate that allowing randomness significantly reduces communication complex-
ity. Specifically, we show that approximating Borda scores within an error of ϵ with high probability
requires only O

(
1
ϵ2m

(
logm+ log 1

δ

))
bits (Theorem 4.2).

Related Research. Our project contributes to an ongoing line of research on the outcomes of voting
rules given only partial information about voters’ preferences. Conitzer and Sandholm [5] studied
the communication complexity of voting rules without approximation. For many well-known voting
rules, they proved matching upper and lower bounds on the communication complexity of comput-
ing the winner deterministically or non-deterministically. In particular, they showed that any deter-
ministic or non-deterministic voting protocol that determines the winner of the Borda voting rule
requires Ω(nm logm) bits of communication—enough for each voter to communicate their entire
ranking. In several ways, our project extends their results by introducing the notion of approxima-
tion to their (mostly dismal) results. Service and Adams [15] studied the problem of approximating
scoring rules using a different notion of approximation than ours, focusing on a multiplicative form.
Specifically, they considered the problem of finding an alternative a such that its actual score s(a)
is in [(1 − ϵ)s(w), s(w)], where w is the winner, i.e., the alternative with the highest score. For
all ϵ ∈ (0, 1), they presented a protocol with O(nm log 1

ϵ ) communication that finds such an al-
ternative. They also showed that for ϵ ≤ 1

4 , any deterministic communication protocol in their
notion of approximation requires O(nm) bits of communication. Halpern et al. [8] characterized

1While low communication complexity suggests feasibility, it does not guarantee it, as voters may still face
significant cognitive or logistical challenges in generating their responses. For example, a single query to a
voter, such as “Is A your 42nd favorite choice?” might still require essentially fully ranking all alternatives to
compute a response.
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positional scoring rules computable with limited queries and established tight bounds for determin-
istic protocols. Their work is relevant to our study of approximating the Borda rule, as it highlights
the challenges of balancing communication efficiency with computation under limited information.
Heckel et al. [9] studied the randomized communication complexity of determining the k alterna-
tives with the highest scores, allowing for a small number of wrongly included alternatives, with high
probability. Their results critically depend on the size of the gaps between scores of alternatives.

2 Model and Preliminaries

In this section, we present the formal framework for our analysis, including definitions of voting
rules, the Borda rule, approximation concepts, and the communication complexity framework used
to evaluate the information requirements of computing and approximating these rules.

2.1 Voting Rules

Let V be a set of n voters and let A = {ai}i∈[m] be a set of m alternatives, where each alternative
corresponds to a candidate in a voting setting. Each voter i ∈ V holds a private ranking σi over
the alternatives, specifying their preferences. A ranking is a bijection σ : [m] → A, where σ(j)
denotes the candidate ranked in the j-th position. For two candidates a, b ∈ A and a ranking σ,
we write a ≻σ b if σ−1(a) < σ−1(b), indicating that a is preferred to b under σ. Let L(A)
denote the set of all m! possible rankings over the candidates in A. A preference profile is a tuple
σ = (σ1, . . . , σn) ∈ L(A)n, where σi ∈ L(A) is the ranking of voter i. A voting rule V is a function
V : L(A)n → L(A), mapping a profile of preferences σ ∈ L(A)n over a set of alternatives A to a
ranking τ ∈ L(A).

A scoring rule is a specific type of voting rule that assigns numerical scores to candidates based on
their positions in the rankings of the voters. Formally:
Definition 2.1 (Scoring Rule). Given a vector α = (α1, α2, . . . , αm), where α1 ≥ α2 ≥ · · · ≥
αm ≥ 0, the scoring rule induced by α, denoted sα, is defined as follows: for a profile of preferences
σ = (σ1, . . . , σn) ∈ L(A)n, the score of a candidate a ∈ A is:

sα(σ)(a) =
1

n

n∑
i=1

ασ−1
i (a),

The rule determines a final ranking τ ∈ L(A) by sorting the candidates in descending order of their
scores sα(a), breaking ties arbitrarily if necessary.

Remark 2.2. With slight abuse of notation, we will identify sα both as a scoring function that
assigns a score to each candidate and as a voting function that outputs a ranking of candidates
given a profile. When clear from the context, we will omit explicitly mentioning α or σ and simply
write s(a) to denote the score of a candidate a.

An important example of a scoring rule is plurality, which is induced by the vector α =
(1, 0, 0, . . . , 0). Under this rule, each voter assigns a score of 1 to their top-ranked candidate and 0
to all others.

Once we associate the output ranking with the richer scoring vector, which assigns a numerical value
to each rank, we obtain a natural notion of ”approximation.” This allows us to compute scores that
deviate slightly from their exact values while preserving the overall structure and essence of the
scoring rule.

A key scoring rule, which we will focus on in this project, is the Borda rule:
Definition 2.3 (Borda Rule). The (normalized) Borda scoring rule s∗ is the scoring rule induced
by

α =
1

n(m− 1)
(m− 1,m− 2, . . . , 0)

The Borda rule assigns a normalized score s∗(a) ∈ [0, 1] to each candidate a ∈ A. Each voter
awards their most preferred candidate 1

n point, the second-most preferred 1
n − 1

n(m−1) points, and
so on, until the least preferred gets 0 points. We note that this differs from the most common
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definition of Borda by dividing all points by 1
n(m−1) to make sure that as the number of voters or

alternatives increases, the Borda score stays less than one. Moreover, this normalization allows us
to interpret s(a) as the probability that a voter, chosen uniformly at random, prefers a over another
alternative chosen uniformly at random (see Lemma 4.1).

The Borda scoring rule, as we will show below, is one of the most communication-intensive scor-
ing rules (details to follow). However, its theoretical properties make it a highly attractive choice
in practice [12]. Simplified versions of the Borda rule are widely adopted in real-world applica-
tions. For instance, it is used to select the Most Valuable Player (MVP) in major American sports
leagues [14], determine the winners of the Ballon d’Or (FIFA Player of the Year) awards [1], and
in the Eurovision Song Contest [2]. A generalization of the Borda rule, the Bradley-Terry model
(see [16] for the connection), is extensively used to align AI systems with human feedback [4, 11].

2.2 Approximation

Below we define our notion of additive approximation.
Definition 2.4 (ϵ-Approximation). For a given voting profile σ, a scoring vector s′ is said to be an
ϵ-approximate to the outcome s(σ) of the scoring rule if

∥s′ − s(σ)∥∞ ≤ ϵ,

where ∥ · ∥∞ denotes the maximum absolute difference across all candidates. We denote the set of
all vectors that are a ε-approximation to s(σ) as

Bε(s(σ)) = {s′ ∈ Rn : ∥s′ − s(σ)∥∞ ≤ ϵ}.

Notice that in this definition, we require the approximate scoring vector to approximate all alterna-
tives simultaneously.

For scoring rules like Borda, the discrete nature of scores necessitates careful consideration.
Remark 2.5. The Borda score of any candidate changes in discrete units of u = 1

n(m−1) , corre-
sponding to a single rank swap in one voter’s ranking.

Consequently, throughout the presentation of our results, it will at times be more natural to express
the approximation error ϵ in terms of these units u.

2.3 Communication Complexity

We briefly review the model of communication complexity and the concept of a fooling set, which
is a fundamental tool for proving lower bound. For a more throughout review, we refer to [3],[10],
and [13]. We extend these definitions to an approximation setting and prove Theorem 2.7 which will
be essential for all lower bounds in this paper.

In our setting, n voters each hold private rankings σi ∈ L(A) over a set of candidates A. Together,
the voters aim to approximate a function s : L(A)n → Rm. A protocol specifies the communica-
tion process by which voters share information about their rankings. We consider the blackboard
model, where in each step a voter communicates a single bit to all other voters (i.e., writes it on a
public blackboard), based on their ranking and the information exchanged so far. Upon termina-
tion, the protocol returns a score vector based on the entire communication. We say a protocol is
ε-approximates a scoring function s if for all σ = (σ1, ..., σn), the returned score vector s′ is an
ε-approximation to s(σ), i.e. s′ ∈ Bε(s(σ)).

In a deterministic protocol, the next voter to communicate is a function of the communication history
thus far, and this voter’s communication is a function of their private input (their ranking) and the
communication history thus far. The deterministic communication complexity of ε-approximating a
scoring rule s is the worst-case number of bits exchanged over all possible input profiles in the most
efficient ε-approximate protocol.

A common technique for proving lower bounds on deterministic communication complexity is giv-
ing a fooling set, a collection of input profiles that exhibit specific combinatorial properties. In-
tuitively, a fooling set demonstrates that any protocol attempting to compute s must distinguish
between a large number of distinct inputs, inherently requiring significant communication.
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Definition 2.6 (t-mixing fooling set for ϵ-approximation). A t-mixing fooling set for ε-
approximating a scoring rule s is a collection of input profiles

F =
{
σj

}
j
, σj = (σj

i )i∈[n]

such that for any M ⊆ [|F|], |M | = t there exists a mixed profile σM = (σri
i )i∈[n], where ri ∈ M ,

such that Bε(s(σ
M )) ∩Bε(s(σ

j)) = ∅ for some j ∈ M .

The essence of the fooling set argument is that we can mix components of any t different profiles in
F to change the resulting scoring vector such that there is no vector that is both an ε-approximating
to this new scoring vector and any of the scoring vectors of a profile in the fooling set. This intuition
is formalized in the following theorem. The proof essentially follows the structure of all fooling set
lower bound arguments (see f.e. [10] or [15]), adapted to our approximation setting.
Theorem 2.7. Assume there exists a t-mixing fooling set F for ε-approximation for a scoring rule
s. Then the deterministic communication complexity of s is at least log2

|F|
t−1 .

Proof. Let F = {σ1, ..., σ|F|}. Assume towards a contradiction that there exists a deterministic
communication protocol that ε-approximates s and communicates less than log2

|F|
t−1 bits in the

worst case. Thus, there exist less than |F|
t−1 possible strings of bits communicated. By the pigeonhole

principle, there exists a set M ⊆ [|F|] of size at least t such that the same communication occurs in
the protocol for all voting profiles σj with j ∈ M . Thus, for all σj , j ∈ M , the protocol returns the
same scoring vector s′. Since the protocol ε-approximates s, we know that s′ ∈ Bε(s(σ

j)) for all
j ∈ M.

However, by the definition of F , we know that there exists a voting profile σM = (σri
i )i∈[n], where

ri ∈ M , such that Bε(s(σ
M ))∩Bε(s(σ

j)) = ∅ for some σj ∈ F . Since each voter’s communication
at a given time only depends only on their own ranking and the prior communication, the same
communication as for all σj , j ∈ M occurs also on σM . Consequently, the protocol returns s′ on
voting profile σM . We know that for some j ∈ M , there does not exist a vector that ε-approximates
both σj and σM , i.e., Bε(s(σ

M )) ∩Bε(s(σ
j)) = ∅. Since s′ is an ε-approximation to s(σj) for all

j ∈ M , i.e., s′ ∈ Bε(s(σ
j)), it follows that s′ /∈ Bε(s(σ

M )), a contradiction to the protocol being
an ε-approximation to s.

Two other commonly used notions of communication complexity are randomized and non-
deterministic communication complexity.

In a randomized protocol, both the function choosing the next voter to communicate and each voter’s
function choosing their communication have access to random bits. Whether these random bits
are private or public does not change the bound we obtain in this paper [10]. The randomized
communication complexity of ε-approximating a scoring rule s is the worst-case number of bits
exchanged over all possible input profiles in the most efficient protocol that for every input profile
is ε-approximate with probability at least 2/3 over the protocol’s randomness.

There are multiple (mostly equivalent) ways to define nondeterministic communication complexity.
One way to think of nondeterministic protocols is as allowing for the function determining each
voter’s communication to be nondeterministic. However, it seems to be more common and conve-
nient to define them using an omniscient prover [13] that writes a proof, i.e., bits c ∈ {0, 1}∗, on the
commonly seen blackboard before the voters start communicating. Out of space constraints, we do
not formalize nondeterministic communication complexity further but note at this point that fooling
set lower bounds generally also apply to nondeterministic protocols and that Theorem 2.7 can be
extended to this case with a formal definition of nondeterminism, thus extending the lower bound
results in this paper for deterministic protocols to nondeterministic protocols as well.

3 Non-Random Communication Complexity

3.1 Upper Bounds

A trivial upper bound on the communication complexity can be obtained by having each voter com-
municate their entire ranking:
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Theorem 3.1. The deterministic communication complexity of any voting rule is O(nm logm).

Proof. Consider the protocol where each voter communicates their ranking by sending the posi-
tion σ−1

i (a) of each candidate a ∈ A, requiring m · logm bits per voter and thus n · m logm =
O(nm logm) for n voters in total.

This result is tight, as shown by the following matching lower bounds on even the nondeterministic
communication complexity:
Theorem 3.2. [Special case of Theorem 3.5 for ε = 0] The nondeterministic communication com-
plexity of computing the Borda rule is Ω(nm logm)

This result was shown by Conitzer and Sandholm [5] for deciding the winner under the Borda rule.
Together, these two results demonstrate that the Borda rule is asymptotically as communication-
intensive as a scoring rule can be, as its communication complexity is Θ(nm logm) . This reflects
the “down to the wire” nature of the rule, where already a single rank swap by one voter can change
the outcome. Consequently, any deterministic protocol must asymptotically extract as much infor-
mation as the full rankings from every voter, as even minor details are critical.

Allowing an ϵ-margin simplifies the problem. Voters no longer need to communicate precise rank-
ings but can instead communicate coarser score intervals. By grouping candidates into bins of size
proportional to ϵ, voters only need to indicate the bin index for each candidate, reducing communi-
cation requirements:
Theorem 3.3 (Non-Random Upper Bound). The deterministic communication complexity of simul-
taneously approximating the Borda score s∗(a) for all alternatives a ∈ A within an error of ϵ is
O
(
nm log 1

ϵ

)
.

Proof. Let k ∈ [m] be a parameter to be chosen later. Consider the following protocol: Each voter
i ∈ V partitions their ranking into

⌈
m
k

⌉
bins, with each bin covering up to k positions. Specifically,

the first
⌊
m
k

⌋
bins each contain exactly k positions, and the final bin contains the remaining positions

if m is not divisible by k.2

Each voter i then communicates only the bin index ℓi(a) for each candidate a, so that σ−1
i (a) (the

exact position of a in i’s ranking) satisfies:

(ℓi(a)− 1)k + 1 ≤ σ−1
i (a) ≤ ℓi(a)k.

The communication cost is m log
(
m
k

)
bits per voter, as each bin index ℓi(a) requires log

(
m
k

)
bits.

The true Borda score s∗(a) for candidate a is given by: s∗(a) = (n(m−1))−1
∑n

i=1(m−σ−1
i (a)).

The highest position of a within bin ℓi(a) is (ℓi(a)− 1)k + 1, giving the upper bound:

s∗(a) ≤ 1

n(m− 1)

n∑
i=1

(m− ((ℓi(a)− 1)k + 1)) . (1)

The lowest position of a within bin ℓi(a) is ℓi(a)k, giving the lower bound:

s∗(a) ≥ 1

n(m− 1)

n∑
i=1

(m− ℓi(a)k) . (2)

The difference between the upper and lower bounds on s∗(a) gives the error in our approximation:

∆(s∗(a)) =
1

n(m− 1)

n∑
i=1

(m− (ℓi(a)− 1)k − 1− (m− ℓi(a)k)) =
k − 1

m− 1
<

k

m− 1
.

With k < ϵ(m − 1), each voter communicates m log
(
m
k

)
= m log 1

ϵ bits, resulting in a total
communication complexity of O

(
nm log 1

ϵ

)
.

2For example, if m = 5 and k = 2: Bin 1 covers positions 1–2, Bin 2 covers positions 3–4, and Bin 3
covers position 5.
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Figure 1: Example for illustration purposes of one profile in the proof of Theorem 3.5 with m = 13,
n = 8 and 3 slack candidates. The slack candidates, denoted as bji , are used as buffers inserted
between primary candidates xi. Each voter pair corresponds to a permutation of the set of primary
candidates X .

Two remarks are in order. First, this upper bound helps us quantify the trade-off between approxima-
tion error and communication complexity. In the extreme case where ϵ = O( 1

mn ), the approximation
is indistinguishable from exact computation, as the margin of error is smaller than the smallest pos-
sible difference in candidate scores. In this case, the communication complexity of the algorithm is
Θ(nm log nm). As ϵ increases, broader score intervals enable communication gains. For instance,
with ϵ = 1/2, the protocol effectively classifies candidates as “up” (top half) or “down” (bottom
half), yielding a communication complexity of O(nm). This is intuitively optimal due to the “down
to the wire” argument discussed earlier.

Second, the key property of the Borda rule leveraged in the proof is that under- or over-estimating
a candidate’s position in a single voter’s ranking by k positions results in a limited score deviation.
This distinguishes scoring rules like Borda from rules such as plurality, where small misclassifica-
tions can cause significant score increases (e.g., a large 1/n increment in the normalized setting).
More generally, for a scoring rule induced by weights α = (α1, . . . , αm), a similar argument ap-
plies: the best score for a candidate a (Equation (1)) is n−1

∑n
i=1 α(ℓi−1)k, and the worst score

(Equation (2)) is n−1
∑n

i=1 αℓik. Their difference is n−1
∑n

i=1(α(ℓi−1)k − αℓik), thus:

Corollary 3.4. For a scoring rule induced by α = (α1, . . . , αm), for any ϵ > 0, if there exists some
k such that

max
i≤m−k

αi − αi+k < ϵ,

then the communication complexity of ϵ-approximating the scoring rule is at most O
(
nm log m

k

)
.

Having established an upper bound on the communication complexity of approximating Borda
scores, we now turn to proving a lower bound.

3.2 Lower Bound

We provide two different lower-bound arguments which are tight for different values of ε. First, we
essentially show that for ε = O( 1

nm ), no reduction in communication is possible. I.e., to compute
the Borda scores up to a constant number of units (u, see Remark 2.5), asymptotically as much
information as the full rankings are required. Our fooling set construction is loosely based on the
fooling set that Conitzer and Sandholm used in [5] to prove Theorem 3.2. We then show that even
as ϵ grows, as long as ϵ ≤ 1

4 − c for any arbitrarily small constant c > 0, Ω(nm) communication is
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required. The fooling set construction used in this second proof is very similar to a fooling set used
in [15]. We note that their notion of approximation significantly varies from our notion and that it
thus is non-trivial that their arguments translate.

Theorem 3.5 (Non-Random Lower Bound). Let n = 2n′ voters, m candidates, and ϵ = ku =
k

n(m−1) for some k ∈ {0, . . . ,m− 1}. The nondeterministic communication complexity of approxi-
mating the score of all candidates within an error of ϵ is Ω

(
nm

k log
(
m
k

))
.

Proof. We construct a large 2-mixing fooling set of profiles F , where in each profile σ ∈ F , each
candidate has a balanced Borda score of 1

2 . However, for any two profiles σ, τ ∈ F , we can mix
the rankings of voters from σ and τ into a ranking υ such that the score of at least one candidate
in υ exceeds 1

2 by at least 2ϵ, so that no scoring vector can ε-approximate all of s∗(σ), s∗(τ), and
s∗(υ) simultaneously. That is, Bε(s

∗(υ)) ∩ Bε(
1
21) = ∅, where 1 is the m-dimensional 1-vector.

By Theorem 2.7, the existence of a sufficientlly large such F proves this theorem.

We partition the set of candidates into two types: the “primary” candidates X and the “slack”
candidates S. Intuitively, slack candidates are inserted between each pair of primary candidates
to act as buffers. These buffers ensure that mixing creates a change in score proportional to the
buffer size B, amplifying the difference between the previous score and the new mixed score.

Let A = X∪S, where X = {x1, . . . , x|X|} and S = {bji}i∈[B],j∈[|X|−1]. We refer to B as the buffer
width, which is the number of slack candidates placed between each pair of primary candidates in
the rankings. The total number of candidates satisfies: (B + 1)|X| − B = m. We will determine
|X| and B later to optimize the size of F .

Next, we define a (large) class of profiles F and prove it is a fooling set. Let π = (π1, . . . , πn′)
denote a sequence of n′ permutations over X . The profile associated with π, denoted by Pπ =
(σ1, . . . , σn), is defined as follows, for i = 1, ..., n′ (see Figure 1):

σ2i : xπi(1) ≻ b11 ≻ · · · ≻ b1B ≻ xπi(2) ≻ b21 ≻ · · · ≻ b2B ≻ · · · ≻ xπi(|X|),

σ2i−1 : xπi(|X|) ≻ b
|X|
B ≻ · · · ≻ b

|X|
1 ≻ xπi(|X|−1) ≻ · · · ≻ b11 ≻ xπi(1).

The set F consists of all profiles Pπ for all sequences π of n′ permutations over X . Thus, the size
of F is (|X|!)n′

. For any π, the Borda score of each x ∈ X under Pπ is 1
2 , as the contributions

from voters 2i and 2i− 1 even out.

Next, consider two profiles Pπ, P τ ∈ F , where π ̸= τ . Since π ̸= τ , there exists at least one
index i ∈ [|X|] such that πi ̸= τi. This implies that for at least one candidate x ∈ X , π−1

i (x) ̸=
τ−1
i (x). Without loss of generality, assume π−1

i (x) < τ−1
i (x). Construct a mixed profile P (π,τ ) =

(σ1, . . . , σ2n′) as follows (see Figure 2):

σj =

{
σπ
j , if j ̸= 2i− 1,

στ
2i−1, if j = 2i− 1.

That is, for voters 2i − 1 and 2i, we take the voter from the ranking in which x has a higher
Borda contribution, ensuring that x’s position improves in the mixed profile. In P (π,τ ), the score
of x increases because v2i−1 now ranks x higher than in Pπ . The increase in x’s score is given
by ∆s(x)n(m − 1) ≥ B + 1. To ensure s(x) ≥ 1

2 + 2ϵ, it suffices that B+1
n(m−1) ≥ 2ϵ, which

implies B ≥ 2k − 1, where ϵ = k
n(m−1) . Finally, the size of the fooling set is determined by |X|:

|X| = O(m/k). The size of F is thus: |F| = (|X|!)n′
=

(
m
k !
)n′

. Therefore, the communication
complexity lower bound becomes:

log(|F|) = O (n′|X| · log(|X|)) = Ω
(
n
m

k
log

(m
k

))
.

Remark 3.6. For ε = O( 1
mn ) we get that k = O(1), in which case the lower bound becomes

Ω(nm logm), which matches the upper bound.

8



Figure 2: Mixing profiles strategy: The left column shows two profiles that differ in at least one pair
of voters, while the right column illustrates the mixing strategy, where the second-row voter in the
first pair changes compared to the first profile.

Remark 3.7. Notice that the above constructions could be applied to general scoring rules. The
only property we used about Borda is the fact that moving B + 1 scores increases the candidate’s
score “enough”.

We now move on to the second lower bound.

Theorem 3.8. Let there be n = 2n′ voters, m candidates, and ε ≤ 1/4− c for an arbitrarily small
constant c > 0. The nondeterministic communication complexity of approximating the score of all
candidates within an error of ε is Ω(nm).

Similarly to the proof of Theorem 3.5, we construct a large fooling set. The main differences are that
the fooling set is t-mixing and that “buffer” candidates are not used between every pair of candidates
but only between and upper and lower section of candidates. Because of this change, we no longer
consider permutations over the primary candidates but pair those candidates up and consider the
ways in which each pair can be split between the upper and lower half. This different use of buffer
candidates makes us loose the additional logm in the bound while allowing us to create fooling sets
for larger ε. Moreover, the proof is non-constructive but uses an argument using the probabilistic
method to argue the existence of the fooling set. The proof is relying heavily on a fooling set idea
and two lemmas proven in [15] for a different notion of approximation.

For space reasons, the full proof can be found in Appendix A.

4 Randomized Communication Complexity

The non-randomized upper and lower bounds established in Section 3 demonstrate that deterministic
protocols require substantial communication to compute or approximate the Borda scores, especially
for small ϵ. However, introducing randomness can significantly reduce the communication burden
while maintaining high accuracy.

4.1 Key Insight: Pairwise Comparisons and Sampling

The key insight enabling this reduction comes from the observation that the Borda score of a can-
didate a can be computed by only looking at the fraction of voters who prefer a over b for any pair
(a, b) of candidates. This transformation reduces the need to access full rankings and shifts the com-
putational focus to pairwise preferences. For a given profile σ, denote by Pσ ∈ Rm×m the pairwise
majority matrix, where the entry Pσ

ab represents the number of voters who prefer a to b:

Pσ
ab = |{i ∈ V : a ≻σi

b}| .

9



The following Lemma 4.1 shows that the Borda scores can be computed using only information
from Pσ . Notice that Pσ is agnostic to n and requires storing only m×m real numbers, making it
significantly more compact than full rankings.
Lemma 4.1. The Borda score s∗(a) of a candidate a ∈ A can be computed as:

s∗(a) =
1

n(m− 1)

∑
b∈A\{a}

Pσ
ab,

where Pσ
ab is the pairwise majority matrix for the profile σ.

Lemma 4.1 shows that the Borda score s∗(a) is equivalent to the average fraction of voters who
prefer a over other candidates. Formally,

s∗(a) =
1

m− 1

[∑
b∈A\{a} Pab

n

]
= Eb∼U(A\{a})

[
Ei∼U(V )

[
1a≻ib

]]
,

where U(X) denotes the uniform distribution over the set X . This characterization motivates the
use of randomized protocols, as we can approximate the pairwise comparisons by sampling voters
and applying a simple concentration argument.

Proof of Lemma 4.1.

n(m− 1)s∗(a) =

n∑
i=1

(
m− σ−1

i (a)
)
=

n∑
i=1

∑
b∈A,b̸=a

1[σ−1
i (a) < σ−1

i (b)]

=
∑

b∈A,b̸=a

n∑
i=1

1[σ−1
i (a) < σ−1

i (b)] =
∑

b∈A,b̸=a

Pσ
ab.

4.2 Randomized Protocol

Building on this insight, we now present a randomized protocol for approximating Borda scores:
Theorem 4.2. There exists an algorithm with communication complexity

O
(

1

ε2
m

(
logm+ log

1

δ

))
that returns approximate scores ŝ(a) for all a ∈ A such that with probability at least 1 − δ for all
a ∈ A, |ŝ(a)− s∗(a)| < ε.

Proof. We aim to approximate the Borda scores s(a) for all candidates a ∈ A using a randomized
protocol. Let n′ be a parameter to be chosen later. For each pair of distinct alternatives (a, b) ∈ A2,
we sample n′ voters uniformly and independently at random from V . For each voter i in the sample,
we define a random variable: Xi

ab = 1[a ≻σi
b], indicating whether voter i prefers a over b. Define

the approximate Borda score for a candidate a as:

ŝ(a) =
1

(m− 1)

∑
b∈A\{a}

1

n′

n′∑
i=1

Xi
ab.

By Lemma 4.1, E[ŝ(a)] = s∗(a). By Hoeffding’s inequality,

Pr [|ŝ(a)− s∗(a)| ≥ ϵ] ≤ 2(m− 1) exp
(
−2n′ϵ2

)
.

To ensure that all candidates are approximated within ϵ simultaneously, we apply a union bound:

Pr [∀a ∈ A : |ŝ(a)− s(a)| ≤ ϵ] ≥ 1− 2m(m− 1) exp
(
−2n′ϵ2

)
.

To achieve a confidence level of 1− δ, we choose n′ such that:

2m(m− 1) exp
(
−2n′ϵ2

)
≤ δ.
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This simplifies to:

n′ =
1

2ϵ2
log

(
2m(m− 1)

δ

)
.

Each sampled voter communicates 1 bit per pair (a, b), and there are m(m − 1)/2 pairs. Thus, the
total communication complexity is:

m(m− 1)

2
· n′ = O

(m
ϵ2

log
(m
δ

))
.

Remark 4.3. More generally, for any scoring rule that can be computed directly from the pairwise
majority matrix P (also known as a C2 voting rule), this randomized protocol can be extended.

5 Conclusion

Reducing the communication burden in voting is crucial for enabling preference aggregation in cases
with many voters and candidates. This work analyzed the communication complexity of approximat-
ing the Borda rule, offering tight bounds for deterministic protocols and demonstrating the potential
of randomized methods to significantly reduce communication costs while maintaining accuracy.
These results highlight the practicality of approximate voting rules, particularly in low-stakes set-
tings where voters are willing to trade some accuracy for efficiency. Future work could explore
communication-efficient protocols for other voting rules, examine worst-case versus average-case
scenarios, and investigate methods that preserve privacy while minimizing communication. By ad-
vancing understanding of these trade-offs, we take a step toward making voting rules more scalable
and adaptable for modern applications.

Our randomized protocol is non-adaptive, meaning that the protocol runs independently of the re-
alization of sampled voter preferences. However, introducing adaptivity into the sampling process
leads to an interesting connection with multi-armed bandit problems. Specifically, for each of the(
m
2

)
pairs of candidates (a, b), we can identify the pair as an arm, with the mean reward of the arm

corresponding to Pab/n, the fraction of voters who prefer a over b. For example, to estimate the
Borda score of a candidate a, one could iteratively sample pairwise comparisons between a and
other candidates b ∈ A \ {a}, adapting the number of samples based on the uncertainty in Pab.
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A Proof of Theorem 3.8

Similar to the proof of Theorem 3.5, we construct a large t-mixing fooling set of profiles F , where
in each profile σ ∈ F , each candidate has a balanced Borda score of 1

2 . For any t profiles, we
can mix the rankings of voters from these t profiles into a ranking υ such that the score of at least
one candidate in υ exceeds 1

2 by at least 2ϵ, so that no scoring vector can ε-approximate s∗(υ) and
s∗( 121) simultaneously. That is, Bε(s

∗(υ)) ∩Bε(
1
21) = ∅.

To construct F , we again partition the set of candidates into two types: the “primary” candidates
X and the “slack” candidates S. However, differently to above, we don’t insert slack candidates
between any two candidates, but instead split the candidates in an upper and a lower half, separated
by the slack candidates.

Let A = X0 ∪X1 ∪ S, where X0 = {x0
1, . . . , x

0
ℓ}, X1 = {x1

1, . . . , x
1
ℓ}, and S = {b1, ..., bm−2ℓ}.

We will determine ℓ later to optimize the size of F . Let R ∈ {0, 1}n′×ℓ be a 01-matrix. We define
the profile associated with R as PR = (σR

1 , ..., σ
R
n ), where for i = 1, ..., n′

σR
2i : x

Ri,1

1 ≻ x
Ri,2

2 ≻ · · · ≻ x
Ri,ℓ

ℓ ≻ b1 ≻ · · · ≻ b2m−ℓ ≻ x
1−Ri,ℓ

ℓ · · · ≻ x
1−Ri,1

1 ,

σR
2i−1 : x

1−Ri,1

1 ≻ x
1−Ri,2

2 ≻ · · · ≻ x
1−Ri,ℓ

ℓ ≻ b2m−ℓ ≻ · · · ≻ b1 ≻ x
Ri,ℓ

ℓ · · · ≻ x
Ri,1

1 .

It turns out to be difficult to construct a set of matrices R such that the fooling set consisting of
the corresponding PR is both large and has the mixing property we want. However, we can argue
using the probabilistic method that such a fooling set exists. This idea is summarized in the next
two Lemmas, proven in slightly altered versions in [15]. The first roughly shows that t randomly
selected voting profiles with high probability fulfill the condition we expect any t voting profiles in
a fooling set to have. The second aggregates this result over all subsets of size t of a large fooling
set.
Lemma A.1 ([15]). Let R1, ..., Rt ∈ {0, 1}n′×ℓ be t random matrices where each element is inde-
pendently 0 and 1 with equal probability. For j = 1, ..., t, let P j = (σj

i )i∈[n] be the voting profile

corresponding to Rj . Let µ = (1−
(
1
2

)t−1
)n′. Then, with probability at least

exp

(
−ℓδ2µ

2

)
,

there exists an alternative x ∈ X0 and r = (r1, ..., rn) ∈ [t]n such that in the mixed voting profile
P r = (σri

i )i∈[n], x is ranked in the top ℓ by at least n
2 + (1− δ)µ voters, where δ ∈ (0, 1).

Proof ([15]). For any x ∈ X0 and i ∈ [n′], we define the random variable as Zi,x = 1 if and only
if there exist j, j′ ∈ [t] such that x is ranked in the top ℓ by both σj

2i and σj′

2i−1, else Zi,x = 0. The
only case in which Zi,x = 0 is if x is in the top ℓ of σj

2i for all j ∈ [t] or if x is in the top ℓ of σj
2i−1

for all j ∈ [t], i.e., if all of {Rj
i,x}j∈[t] are 0 or all are 1. This happens with probability 1−

(
1
2

)t−1
.

For a fixed x, we can find a mixed voting profile P r as define above by picking the two voters σj
2i

and σj′

2i−1 that rank z in the top ℓ for all i ∈ [n′] where Zx,i = 1 and picking all other voters from

P 1. Thus, x is ranked in the top ℓ by n
2 +

∑n′

i=1 Zi,x voters.

Note that E
[∑n′

i=1 Zi,x

]
= (1 −

(
1
2

)t−1
)n′ = µ. We can use a Chernoff inequality to bound the

probability that this sum is far away from its expectation:

Pr

 n′∑
i=1

Zi,x ≤ (1− δ)µ

 ≤ exp

(
−δ2µ

2

)
.

Since all elements in the matrices R1, ..., Rt are chosen independently, we can conclude that the
probability that there does not exist a x ∈ X0 and mixed voting profile P r in which x is ranked in
the top ℓ by at least n

2 + (1− δ)µ voters is at most exp
(

−ℓδ2µ
2

)
.
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Lemma A.2 ([15]). Let

k =
2

t
exp

(
ℓδ2µ

2t

)
.

There exists a set F = {P j}j∈[k] of voting profiles P j = (σj
i )i∈[n] such that

1. s∗(P j) = 1
21 for j = 1, ..., k, and

2. for any subset M ⊆ [k], |M | = t, there exists an alternative x ∈ X0 and r = (r1, ..., rn) ∈
Mn such that in the mixed voting profile P r = (σri

i )i∈[n], x is ranked in the top ℓ by at

least n
2 + (1− δ)µ voters, where µ = (1−

(
1
2

)t−1
)n′.

Proof ([15]). Let R1, ..., Rtk ∈ {0, 1}n′×ℓ be tk random matrices where each element is indepen-
dently 0 and 1 with equal probability. For j = 1, ..., ℓ, let P j = (σj

i )i∈[n] be the voting profile
corresponding to Rj , and let G = {P j}j∈[tk]. By definition, s∗(P j) = 1

21 for j = 1, ..., k.

Using a union bound and Lemma A.1, we can bound the probability that G does not fulfill property
2 as

Pr [G doesn’t satisfy 2] ≤
(
tk

t

)
Pr[P1, ..., Pt doesn’t satisfy 2] < (tk)t exp

(
−ℓδ2µ

2

)
= 1.

Since the probability that G does not fulfill property 2 is strictly less than 1, it follows that there
exists such a G. Note that by this property, G can contain the same voting profile at most t−1 times,
so we have to remove at most t−2

t−1 tk voting profiles from G to ensure no voting profile appears more
than once. We obtain a set F of size |F| ≥ |G| − t−2

t−1 tk = t
t−1k ≥ k that fulfills both properties in

the lemma since it is a subset of G.

Equipped with these two lemmas, all that is left is to define the values of the placeholder variables.

Proof of Theorem 3.8. Let F = {Pj}j∈[k], Pj = (σj
i )i∈[n] be the set defined in Lemma A.2. By

property 2, for any M ⊆ [k], |M | = t there exists an alternative a ∈ A and a mixed profile
PM = (σri

i )i∈[n], where ri ∈ M , such that

s∗(PM )(a) ≥ m− ℓ

(m− 1)n

(n
2
+ (1− δ)µ

)
.

We define ℓ = (1−cℓ)m, δ = 1−cd and t = log2(ct)+1 for constants (i.e., independent of m,n, ε)
cℓ, cd ∈ (0, 1) and ct ≥ 2, to get s∗(PM )(a) ≥ 1

2 + cℓcd
2 (1− 1

ct
).

If s∗(PM )(a) ≥ 1
2 + 2ε, we get that Bε(s

∗(PM )) ∩ Bε(s
∗(P j)) = ∅ for all j ∈ M and thus that

F is a t-mixing fooling set for ε-approximating s∗, the Borda voting rule. By Theorem 2.7, this
implies that the communication complexity of ε-approximating s∗ is at least

log2

(
|F |
t

)
= log2

(
2

t2
exp

(
ℓδ2µ

2t

))
= Θ(mn)

for all ε ≤ cℓcd
4 (1− 1

ct
). This holds for all ε ≤ 1

4 − c for any arbitrary constant c > 0 by picking cℓ
and cd sufficiently close to 1 and ct sufficiently large.

Remark A.3. Using t = 2, we can get with the above proof technique that the communication
complexity of Borda is Ω(mn) for all ε ≤ 1

8 − c for an arbitrary constant c > 0. For t = 2, it
seems feasible to give a construction for such a fooling set F by making the matrices R contain
codewords of a binary code with constant rate and constant relative distance. However, we also
note that making this proof constructive for t = 2 only has aesthetic value and cannot improve the
bound using this class of fooling sets.
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